
Unittest for state machine

February 28, 2021

Unittest for state machine

Contents

1 Test Information 4

1.1 Test Candidate Information . 4

1.2 Unittest Information . 4

1.3 Test System Information . 4

2 Statistic 4

2.1 Test-Statistic for testrun with python 2.7.18 (final) . 4

2.2 Test-Statistic for testrun with python 3.8.5 (final) . 5

2.3 Coverage Statistic . 5

3 Tested Requirements 6

3.1 Module Initialisation . 6

3.1.1 Default State . 6

3.1.2 Default Last Transition Condtion . 6

3.1.3 Default Previous State . 7

3.1.4 Additional Keyword Arguments . 8

3.2 Transition Changes . 9

3.2.1 Transitiondefinition and -flow . 9

3.2.2 Transitiontiming . 11

3.2.3 Transitionpriorisation . 12

3.3 Module Interface . 13

3.3.1 This State . 13

3.3.2 This State is . 14

3.3.3 This State Duration . 15

3.3.4 Last Transition Condition . 15

3.3.5 Last Transition Condition was . 16

3.3.6 Previous State . 17

3.3.7 Previous State was . 18

3.3.8 Previous State Duration . 19

3.4 Transition Callbacks . 20

1 / 66

Unittest for state machine

3.4.1 State change callback for a defined transition and targetstate . 20

3.4.2 State change callback for a defined transition . 21

3.4.3 State change callback for a defined targetstate . 22

3.4.4 State change callback for all kind of state changes . 23

3.4.5 Execution order of Callbacks . 24

A Trace for testrun with python 2.7.18 (final) 26

A.1 Tests with status Info (20) . 26

A.1.1 Default State . 26

A.1.2 Default Last Transition Condtion . 26

A.1.3 Default Previous State . 27

A.1.4 Additional Keyword Arguments . 27

A.1.5 Transitiondefinition and -flow . 28

A.1.6 Transitiontiming . 29

A.1.7 Transitionpriorisation . 31

A.1.8 This State . 32

A.1.9 This State is . 32

A.1.10 This State Duration . 33

A.1.11 Last Transition Condition . 33

A.1.12 Last Transition Condition was . 34

A.1.13 Previous State . 35

A.1.14 Previous State was . 35

A.1.15 Previous State Duration . 36

A.1.16 State change callback for a defined transition and targetstate . 36

A.1.17 State change callback for a defined transition . 38

A.1.18 State change callback for a defined targetstate . 39

A.1.19 State change callback for all kind of state changes . 40

A.1.20 Execution order of Callbacks . 42

2 / 66

Unittest for state machine

B Trace for testrun with python 3.8.5 (final) 44

B.1 Tests with status Info (20) . 44

B.1.1 Default State . 44

B.1.2 Default Last Transition Condtion . 44

B.1.3 Default Previous State . 45

B.1.4 Additional Keyword Arguments . 45

B.1.5 Transitiondefinition and -flow . 46

B.1.6 Transitiontiming . 47

B.1.7 Transitionpriorisation . 49

B.1.8 This State . 50

B.1.9 This State is . 50

B.1.10 This State Duration . 51

B.1.11 Last Transition Condition . 51

B.1.12 Last Transition Condition was . 52

B.1.13 Previous State . 53

B.1.14 Previous State was . 53

B.1.15 Previous State Duration . 54

B.1.16 State change callback for a defined transition and targetstate . 54

B.1.17 State change callback for a defined transition . 56

B.1.18 State change callback for a defined targetstate . 57

B.1.19 State change callback for all kind of state changes . 58

B.1.20 Execution order of Callbacks . 60

C Test-Coverage 62

C.1 state machine . 62

C.1.1 state machine. init .py . 62

3 / 66

Unittest for state machine

1 Test Information

1.1 Test Candidate Information

This Module helps implementing state machines.

Library Information

Name state machine

State Released

Supported Interpreters python2, python3

Version f0888b702a36dcafbc48cab5d887f4dd

Dependencies

1.2 Unittest Information

Unittest Information

Version 88eb21720b062b30078e96dd6204ccdd

Testruns with python 2.7.18 (final), python 3.8.5 (final)

1.3 Test System Information

System Information

Architecture 64bit

Distribution Linux Mint 20.1 ulyssa

Hostname erle

Kernel 5.8.0-44-generic (#50 20.04.1-Ubuntu SMP Wed Feb 10 21:07:30 UTC 2021)

Machine x86 64

Path /usr/data/dirk/prj/unittest/state machine/unittest

System Linux

Username dirk

2 Statistic

2.1 Test-Statistic for testrun with python 2.7.18 (final)

Number of tests 20

Number of successfull tests 20

Number of possibly failed tests 0

Number of failed tests 0

Executionlevel Full Test (all defined tests)

Time consumption 1.686s

4 / 66

Unittest for state machine

2.2 Test-Statistic for testrun with python 3.8.5 (final)

Number of tests 20

Number of successfull tests 20

Number of possibly failed tests 0

Number of failed tests 0

Executionlevel Full Test (all defined tests)

Time consumption 1.674s

2.3 Coverage Statistic

Module- or Filename Line-Coverage Branch-Coverage

state machine 100.0% 100.0%

state machine. init .py 100.0%

5 / 66

Unittest for state machine

3 Tested Requirements

3.1 Module Initialisation

3.1.1 Default State

Description

The state machine shall start in the state, given while module initialisation.

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion

State machine is in the initial state after initialisation.

Testresult

This test was passed with the state: Success. See also full trace in section A.1.1!

Testrun: python 2.7.18 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (22)

Start-Time: 2021-02-28 18:52:07,711

Finished-Time: 2021-02-28 18:52:07,711

Time-Consumption 0.000s

Testsummary:

Info Initialising the state machine with state c

Success State after initialisation is correct (Content ’state c’ and Type is <type ’str’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.1!

Testrun: python 3.8.5 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (22)

Start-Time: 2021-02-28 18:52:09,938

Finished-Time: 2021-02-28 18:52:09,938

Time-Consumption 0.001s

Testsummary:

Info Initialising the state machine with state c

Success State after initialisation is correct (Content ’state c’ and Type is <class ’str’>).

3.1.2 Default Last Transition Condtion

Description

The state machine shall return the string init for last transition condition after initalisation.

6 / 66

Unittest for state machine

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion

The last transition condition is init after initialisation.

Testresult

This test was passed with the state: Success. See also full trace in section A.1.2!

Testrun: python 2.7.18 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (23)

Start-Time: 2021-02-28 18:52:07,711

Finished-Time: 2021-02-28 18:52:07,712

Time-Consumption 0.000s

Testsummary:

Info Initialising the state machine with state c

Success Last transition condition after initialisation is correct (Content ’ init ’ and Type is <type

’str’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.2!

Testrun: python 3.8.5 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (23)

Start-Time: 2021-02-28 18:52:09,938

Finished-Time: 2021-02-28 18:52:09,939

Time-Consumption 0.000s

Testsummary:

Info Initialising the state machine with state c

Success Last transition condition after initialisation is correct (Content ’ init ’ and Type is <class

’str’>).

3.1.3 Default Previous State

Description

The state machine shall return None for previous state after initalisation.

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion

The previous state is None after initialisation.

7 / 66

Unittest for state machine

Testresult

This test was passed with the state: Success. See also full trace in section A.1.3!

Testrun: python 2.7.18 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (24)

Start-Time: 2021-02-28 18:52:07,712

Finished-Time: 2021-02-28 18:52:07,712

Time-Consumption 0.000s

Testsummary:

Info Initialising the state machine with state c

Success Last state after initialisation is correct (Content None and Type is <type ’NoneType’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.3!

Testrun: python 3.8.5 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (24)

Start-Time: 2021-02-28 18:52:09,939

Finished-Time: 2021-02-28 18:52:09,939

Time-Consumption 0.000s

Testsummary:

Info Initialising the state machine with state c

Success Last state after initialisation is correct (Content None and Type is <class ’NoneType’>).

3.1.4 Additional Keyword Arguments

Description

The state machine shall store all given keyword arguments as variables of the classes instance.

Reason for the implementation

Store further information (e.g. for calculation of the transition conditions).

Fitcriterion

At least two given keyword arguments with different types are available after initialisation.

Testresult

This test was passed with the state: Success. See also full trace in section A.1.4!

Testrun: python 2.7.18 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (25)

Start-Time: 2021-02-28 18:52:07,712

Finished-Time: 2021-02-28 18:52:07,713

Time-Consumption 0.001s

8 / 66

Unittest for state machine

Testsummary:

Info Initialising the state machine with state c

Success Keyword argument kw arg no 4 stored in state machine is correct (Content {’1’: 1, ’2’: ’two’}
and Type is <type ’dict’>).

Success Keyword argument kw arg no 1 stored in state machine is correct (Content 1 and Type is <type

’int’>).
Success Keyword argument kw arg no 3 stored in state machine is correct (Content True and Type is

<type ’bool’>).
Success Keyword argument kw arg no 2 stored in state machine is correct (Content ’2’ and Type is

<type ’str’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.4!

Testrun: python 3.8.5 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (25)

Start-Time: 2021-02-28 18:52:09,939

Finished-Time: 2021-02-28 18:52:09,940

Time-Consumption 0.001s

Testsummary:

Info Initialising the state machine with state c

Success Keyword argument kw arg no 1 stored in state machine is correct (Content 1 and Type is <class

’int’>).
Success Keyword argument kw arg no 2 stored in state machine is correct (Content ’2’ and Type is

<class ’str’>).
Success Keyword argument kw arg no 3 stored in state machine is correct (Content True and Type is

<class ’bool’>).
Success Keyword argument kw arg no 4 stored in state machine is correct (Content {’1’: 1, ’2’: ’two’}

and Type is <class ’dict’>).

3.2 Transition Changes

3.2.1 Transitiondefinition and -flow

Description

The user shall be able to define multiple states and transitions for the state machine. A transition shall have a start

state, a target state and a transition condition. The transition condition shall be a method, where the user is able to

calculate the condition on demand.

Reason for the implementation

Definition of the transitions for a state machine.

Fitcriterion

The order of at least three state changes is correct.

9 / 66

Unittest for state machine

Testresult

This test was passed with the state: Success. See also full trace in section A.1.5!

Testrun: python 2.7.18 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (28)

Start-Time: 2021-02-28 18:52:07,713

Finished-Time: 2021-02-28 18:52:07,715

Time-Consumption 0.001s

Testsummary:

Info Initialising state machine with state a

Success Initial state after Initialisation is correct (Content ’state a’ and Type is <type ’str’>).

Info Work routine executed the 1st time to do the state change. Defined Transitions are:

True→state b (0.0s); False→state c (0.0s)
Success State after 1st execution of work method is correct (Content ’state b’ and Type is <type ’str’>).

Info Work routine executed the 2nd time to do the state change. Defined Transitions are:

False→state a (0.0s); True→state c (0.0s)
Success State after 2nd execution of work method is correct (Content ’state c’ and Type is <type

’str’>).
Info Work routine executed the 3rd time with no effect. No Transitions starting from state c (dead

end)
Success State after 3rd execution of work method is correct (Content ’state c’ and Type is <type ’str’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.5!

Testrun: python 3.8.5 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (28)

Start-Time: 2021-02-28 18:52:09,940

Finished-Time: 2021-02-28 18:52:09,941

Time-Consumption 0.001s

Testsummary:

Info Initialising state machine with state a

Success Initial state after Initialisation is correct (Content ’state a’ and Type is <class ’str’>).

Info Work routine executed the 1st time to do the state change. Defined Transitions are:

True→state b (0.0s); False→state c (0.0s)
Success State after 1st execution of work method is correct (Content ’state b’ and Type is <class

’str’>).
Info Work routine executed the 2nd time to do the state change. Defined Transitions are:

False→state a (0.0s); True→state c (0.0s)
Success State after 2nd execution of work method is correct (Content ’state c’ and Type is <class

’str’>).
Info Work routine executed the 3rd time with no effect. No Transitions starting from state c (dead

end)
Success State after 3rd execution of work method is correct (Content ’state c’ and Type is <class

’str’>).

10 / 66

Unittest for state machine

3.2.2 Transitiontiming

Description

The user shall be able to define for each transition a transition time. On change of the transition condition to True, the

transition timer starts counting the time from 0.0s. After reaching the transition time, the transition gets active.

Reason for the implementation

Robustness of the state changes (e.g. Oscillating conditions shall be ignored).

Fitcriterion

The transition time and the restart of the transion timer by setting the transition condition to False and to True again

results in the expected transition timing (±0.05s).

Testresult

This test was passed with the state: Success. See also full trace in section A.1.6!

Testrun: python 2.7.18 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (29)

Start-Time: 2021-02-28 18:52:07,715

Finished-Time: 2021-02-28 18:52:08,095

Time-Consumption 0.380s

Testsummary:

Info Initialising state machine with state a

Success Initial state after Initialisation is correct (Content ’state a’ and Type is <type ’str’>).

Info Waiting for 0.160s or state change

Success State after 1st cycle is correct (Content ’state b’ and Type is <type ’str’>).

Success Transition time after 1st cycle is correct (Content 0.15063905715942383 in [0.145 ... 0.155]

and Type is <type ’float’>).
Info Waiting for 0.235s or state change

Success State after 2nd cycle is correct (Content ’state c’ and Type is <type ’str’>).

Success Transition time after 2nd cycle is correct (Content 0.1503770351409912 in [0.145 ... 0.155]

and Type is <type ’float’>).
Success Previous state duration is correct (Content 0.22572588920593262 in [0.21999999999999997 ...

0.22999999999999998] and Type is <type ’float’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.6!

Testrun: python 3.8.5 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (29)

Start-Time: 2021-02-28 18:52:09,941

Finished-Time: 2021-02-28 18:52:10,319

Time-Consumption 0.377s

Testsummary:

Info Initialising state machine with state a

11 / 66

Unittest for state machine

Success Initial state after Initialisation is correct (Content ’state a’ and Type is <class ’str’>).

Info Waiting for 0.160s or state change

Success State after 1st cycle is correct (Content ’state b’ and Type is <class ’str’>).

Success Transition time after 1st cycle is correct (Content 0.150407075881958 in [0.145 ... 0.155] and

Type is <class ’float’>).
Info Waiting for 0.235s or state change

Success State after 2nd cycle is correct (Content ’state c’ and Type is <class ’str’>).

Success Transition time after 2nd cycle is correct (Content 0.15027642250061035 in [0.145 ... 0.155]

and Type is <class ’float’>).
Success Previous state duration is correct (Content 0.22556781768798828 in [0.21999999999999997 ...

0.22999999999999998] and Type is <class ’float’>).

3.2.3 Transitionpriorisation

Description

The state machine shall use the first active transition. If multiple transition are active, the transition with the highest

overlap time will be used.

Reason for the implementation

Compensate the weakness of the execution quantisation.

Fitcriterion

At least one transition with at least two active conditions results in the expected state change.

Testresult

This test was passed with the state: Success. See also full trace in section A.1.7!

Testrun: python 2.7.18 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (30)

Start-Time: 2021-02-28 18:52:08,095

Finished-Time: 2021-02-28 18:52:08,342

Time-Consumption 0.247s

Testsummary:

Info Initialising state machine with state a, a transition to state b after 0.151s and a transition to

state c after 0.150s
Success Initial state after Initialisation is correct (Content ’state a’ and Type is <type ’str’>).

Info Waiting for 0.300s or state change

Success State after 1st cycle is correct (Content ’state c’ and Type is <type ’str’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.7!

Testrun: python 3.8.5 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (30)

Start-Time: 2021-02-28 18:52:10,319

12 / 66

Unittest for state machine

Finished-Time: 2021-02-28 18:52:10,564

Time-Consumption 0.245s

Testsummary:

Info Initialising state machine with state a, a transition to state b after 0.151s and a transition to

state c after 0.150s
Success Initial state after Initialisation is correct (Content ’state a’ and Type is <class ’str’>).

Info Waiting for 0.300s or state change

Success State after 1st cycle is correct (Content ’state c’ and Type is <class ’str’>).

3.3 Module Interface

3.3.1 This State

Description

The Module shall have a method for getting the current state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returend state fits to the expecation.

Testresult

This test was passed with the state: Success. See also full trace in section A.1.8!

Testrun: python 2.7.18 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (33)

Start-Time: 2021-02-28 18:52:08,343

Finished-Time: 2021-02-28 18:52:08,344

Time-Consumption 0.001s

Testsummary:

Info Initialising the state machine with state c

Success Returnvalue of this state() is correct (Content ’state c’ and Type is <type ’str’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.8!

Testrun: python 3.8.5 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (33)

Start-Time: 2021-02-28 18:52:10,565

Finished-Time: 2021-02-28 18:52:10,567

Time-Consumption 0.002s

Testsummary:

13 / 66

Unittest for state machine

Info Initialising the state machine with state c

Success Returnvalue of this state() is correct (Content ’state c’ and Type is <class ’str’>).

3.3.2 This State is

Description

The Module shall have a method for checking if the given state is currently active.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

Testresult

This test was passed with the state: Success. See also full trace in section A.1.9!

Testrun: python 2.7.18 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (34)

Start-Time: 2021-02-28 18:52:08,345

Finished-Time: 2021-02-28 18:52:08,347

Time-Consumption 0.002s

Testsummary:

Info Initialising the state machine with state c

Success Returnvalue of this state is(state c) is correct (Content True and Type is <type ’bool’>).

Success Returnvalue of this state is(state b) is correct (Content False and Type is <type ’bool’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.9!

Testrun: python 3.8.5 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (34)

Start-Time: 2021-02-28 18:52:10,568

Finished-Time: 2021-02-28 18:52:10,571

Time-Consumption 0.003s

Testsummary:

Info Initialising the state machine with state c

Success Returnvalue of this state is(state c) is correct (Content True and Type is <class ’bool’>).

Success Returnvalue of this state is(state b) is correct (Content False and Type is <class ’bool’>).

14 / 66

Unittest for state machine

3.3.3 This State Duration

Description

The Module shall have a method for getting the time since the last state change appears.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returned duration fits to the current state duration (± 0.05s).

Testresult

This test was passed with the state: Success. See also full trace in section A.1.10!

Testrun: python 2.7.18 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (35)

Start-Time: 2021-02-28 18:52:08,347

Finished-Time: 2021-02-28 18:52:08,600

Time-Consumption 0.253s

Testsummary:

Info Running state machine test sequence.

Success Return Value of this state duration() is correct (Content 0.2516179084777832 in [0.2 ... 0.3]

and Type is <type ’float’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.10!

Testrun: python 3.8.5 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (35)

Start-Time: 2021-02-28 18:52:10,571

Finished-Time: 2021-02-28 18:52:10,824

Time-Consumption 0.253s

Testsummary:

Info Running state machine test sequence.

Success Return Value of this state duration() is correct (Content 0.2513155937194824 in [0.2 ... 0.3]

and Type is <class ’float’>).

3.3.4 Last Transition Condition

Description

The Module shall have a method for getting the last transition condition.

15 / 66

Unittest for state machine

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returned transition condition fits to the expectation.

Testresult

This test was passed with the state: Success. See also full trace in section A.1.11!

Testrun: python 2.7.18 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (36)

Start-Time: 2021-02-28 18:52:08,601

Finished-Time: 2021-02-28 18:52:08,603

Time-Consumption 0.002s

Testsummary:

Info Running state machine test sequence.

Success Returnvalue of last transition condition() is correct (Content ’condition a’ and Type is <type

’str’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.11!

Testrun: python 3.8.5 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (36)

Start-Time: 2021-02-28 18:52:10,825

Finished-Time: 2021-02-28 18:52:10,827

Time-Consumption 0.002s

Testsummary:

Info Running state machine test sequence.

Success Returnvalue of last transition condition() is correct (Content ’condition a’ and Type is <class

’str’>).

3.3.5 Last Transition Condition was

Description

The Module shall have a method for checking if the given condition was the last transition condition.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

16 / 66

Unittest for state machine

Testresult

This test was passed with the state: Success. See also full trace in section A.1.12!

Testrun: python 2.7.18 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (37)

Start-Time: 2021-02-28 18:52:08,604

Finished-Time: 2021-02-28 18:52:08,606

Time-Consumption 0.003s

Testsummary:

Info Running state machine test sequence.

Success Returnvalue of last transition condition(condition a) is correct (Content True and Type is <type

’bool’>).
Success Returnvalue of last transition condition(condition c) is correct (Content False and Type is <type

’bool’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.12!

Testrun: python 3.8.5 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (37)

Start-Time: 2021-02-28 18:52:10,827

Finished-Time: 2021-02-28 18:52:10,829

Time-Consumption 0.002s

Testsummary:

Info Running state machine test sequence.

Success Returnvalue of last transition condition(condition a) is correct (Content True and Type is <class

’bool’>).
Success Returnvalue of last transition condition(condition c) is correct (Content False and Type is

<class ’bool’>).

3.3.6 Previous State

Description

The Module shall have a method for getting the previous state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returend state fits to the expecation.

Testresult

This test was passed with the state: Success. See also full trace in section A.1.13!

17 / 66

Unittest for state machine

Testrun: python 2.7.18 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (38)

Start-Time: 2021-02-28 18:52:08,607

Finished-Time: 2021-02-28 18:52:08,609

Time-Consumption 0.002s

Testsummary:

Info Running state machine test sequence.

Success Returnvalue of previous state() is correct (Content ’state a’ and Type is <type ’str’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.13!

Testrun: python 3.8.5 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (38)

Start-Time: 2021-02-28 18:52:10,830

Finished-Time: 2021-02-28 18:52:10,831

Time-Consumption 0.001s

Testsummary:

Info Running state machine test sequence.

Success Returnvalue of previous state() is correct (Content ’state a’ and Type is <class ’str’>).

3.3.7 Previous State was

Description

The Module shall have a method for checking if the given state was the previous state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

Testresult

This test was passed with the state: Success. See also full trace in section A.1.14!

Testrun: python 2.7.18 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (39)

Start-Time: 2021-02-28 18:52:08,609

Finished-Time: 2021-02-28 18:52:08,612

Time-Consumption 0.003s

Testsummary:

Info Running state machine test sequence.

18 / 66

Unittest for state machine

Success Returnvalue of previous state was(state a) is correct (Content True and Type is <type ’bool’>).

Success Returnvalue of previous state was(state b) is correct (Content False and Type is <type ’bool’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.14!

Testrun: python 3.8.5 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (39)

Start-Time: 2021-02-28 18:52:10,831

Finished-Time: 2021-02-28 18:52:10,833

Time-Consumption 0.002s

Testsummary:

Info Running state machine test sequence.

Success Returnvalue of previous state was(state a) is correct (Content True and Type is <class ’bool’>).

Success Returnvalue of previous state was(state b) is correct (Content False and Type is <class

’bool’>).

3.3.8 Previous State Duration

Description

The Module shall have a method for getting active time for the previous state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returned duration fits to the previous state duration (± 0.05s).

Testresult

This test was passed with the state: Success. See also full trace in section A.1.15!

Testrun: python 2.7.18 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (40)

Start-Time: 2021-02-28 18:52:08,613

Finished-Time: 2021-02-28 18:52:09,367

Time-Consumption 0.754s

Testsummary:

Info Running state machine test sequence.

Success Return Value of previous state duration() is correct (Content 0.7519781589508057 in [0.7 ...

0.8] and Type is <type ’float’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.15!

19 / 66

Unittest for state machine

Testrun: python 3.8.5 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (40)

Start-Time: 2021-02-28 18:52:10,834

Finished-Time: 2021-02-28 18:52:11,587

Time-Consumption 0.753s

Testsummary:

Info Running state machine test sequence.

Success Return Value of previous state duration() is correct (Content 0.7517855167388916 in [0.7 ...

0.8] and Type is <class ’float’>).

3.4 Transition Callbacks

3.4.1 State change callback for a defined transition and targetstate

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for a defined set of transition condition and target state.

Reason for the implementation

Triggering state change actions for a specific transition condition and targetstate.

Fitcriterion

Methods are called in the registration order after state change with all user given arguments for the defined transition

condition and targetstate and at least for one other condition not.

Testresult

This test was passed with the state: Success. See also full trace in section A.1.16!

Testrun: python 2.7.18 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (43)

Start-Time: 2021-02-28 18:52:09,367

Finished-Time: 2021-02-28 18:52:09,374

Time-Consumption 0.007s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Success Execution of state machine callback (1) (state b, condition a) identified by a sequence number:

Values and number of submitted values is correct. See detailed log for more information.
Success Execution of state machine callback (2) (state b, condition a) identified by a sequence number:

Values and number of submitted values is correct. See detailed log for more information.

Testresult

This test was passed with the state: Success. See also full trace in section B.1.16!

20 / 66

Unittest for state machine

Testrun: python 3.8.5 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (43)

Start-Time: 2021-02-28 18:52:11,588

Finished-Time: 2021-02-28 18:52:11,594

Time-Consumption 0.006s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Success Execution of state machine callback (1) (state b, condition a) identified by a sequence number:

Values and number of submitted values is correct. See detailed log for more information.
Success Execution of state machine callback (2) (state b, condition a) identified by a sequence number:

Values and number of submitted values is correct. See detailed log for more information.

3.4.2 State change callback for a defined transition

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for a defined transition condition and all target states.

Reason for the implementation

Triggering state change actions for a specific transition condition.

Fitcriterion

Methods are called in the registration order after state change with all user given arguments for the defined transition

condition and at least for one other transition condition not.

Testresult

This test was passed with the state: Success. See also full trace in section A.1.17!

Testrun: python 2.7.18 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (44)

Start-Time: 2021-02-28 18:52:09,375

Finished-Time: 2021-02-28 18:52:09,382

Time-Consumption 0.008s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Success Execution of state machine callback (1) (all transitions, condition b) identified by a sequence

number: Values and number of submitted values is correct. See detailed log for more informa-

tion.
Success Execution of state machine callback (2) (all transitions, condition b) identified by a sequence

number: Values and number of submitted values is correct. See detailed log for more informa-

tion.

21 / 66

Unittest for state machine

Testresult

This test was passed with the state: Success. See also full trace in section B.1.17!

Testrun: python 3.8.5 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (44)

Start-Time: 2021-02-28 18:52:11,594

Finished-Time: 2021-02-28 18:52:11,601

Time-Consumption 0.006s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Success Execution of state machine callback (1) (all transitions, condition b) identified by a sequence

number: Values and number of submitted values is correct. See detailed log for more informa-

tion.
Success Execution of state machine callback (2) (all transitions, condition b) identified by a sequence

number: Values and number of submitted values is correct. See detailed log for more informa-

tion.

3.4.3 State change callback for a defined targetstate

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for all transition conditions and a defined target state.

Reason for the implementation

Triggering state change actions for a specific targetstate.

Fitcriterion

Methods are called in the registration order after state change with the defined targetstate and at least for one other

targetstate not.

Testresult

This test was passed with the state: Success. See also full trace in section A.1.18!

Testrun: python 2.7.18 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (45)

Start-Time: 2021-02-28 18:52:09,383

Finished-Time: 2021-02-28 18:52:09,390

Time-Consumption 0.007s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Success Execution of state machine callback (1) (state b, all conditions) identified by a sequence num-

ber: Values and number of submitted values is correct. See detailed log for more information.
Success Execution of state machine callback (2) (state b, all conditions) identified by a sequence num-

ber: Values and number of submitted values is correct. See detailed log for more information.

22 / 66

Unittest for state machine

Testresult

This test was passed with the state: Success. See also full trace in section B.1.18!

Testrun: python 3.8.5 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (45)

Start-Time: 2021-02-28 18:52:11,601

Finished-Time: 2021-02-28 18:52:11,608

Time-Consumption 0.007s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Success Execution of state machine callback (1) (state b, all conditions) identified by a sequence num-

ber: Values and number of submitted values is correct. See detailed log for more information.
Success Execution of state machine callback (2) (state b, all conditions) identified by a sequence num-

ber: Values and number of submitted values is correct. See detailed log for more information.

3.4.4 State change callback for all kind of state changes

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for all transitions.

Reason for the implementation

Triggering state change actions for all transition conditions and targetstates.

Fitcriterion

Methods are called in the registration order after state change.

Testresult

This test was passed with the state: Success. See also full trace in section A.1.19!

Testrun: python 2.7.18 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (46)

Start-Time: 2021-02-28 18:52:09,391

Finished-Time: 2021-02-28 18:52:09,401

Time-Consumption 0.010s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Success Execution of state machine callback (1) (all transitions, all conditions) identified by a sequence

number: Values and number of submitted values is correct. See detailed log for more informa-

tion.
Success Execution of state machine callback (2) (all transitions, all conditions) identified by a sequence

number: Values and number of submitted values is correct. See detailed log for more informa-

tion.

23 / 66

Unittest for state machine

Testresult

This test was passed with the state: Success. See also full trace in section B.1.19!

Testrun: python 3.8.5 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (46)

Start-Time: 2021-02-28 18:52:11,608

Finished-Time: 2021-02-28 18:52:11,616

Time-Consumption 0.008s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Success Execution of state machine callback (1) (all transitions, all conditions) identified by a sequence

number: Values and number of submitted values is correct. See detailed log for more informa-

tion.
Success Execution of state machine callback (2) (all transitions, all conditions) identified by a sequence

number: Values and number of submitted values is correct. See detailed log for more informa-

tion.

3.4.5 Execution order of Callbacks

Description

The callbacks shall be executed in the same order as they had been registered.

Reason for the implementation

User shall have the control about the execution order.

Fitcriterion

A callback with specific targetstate and condition will be executed before a non specific callback if the specific one had

been regestered first.

Testresult

This test was passed with the state: Success. See also full trace in section A.1.20!

Testrun: python 2.7.18 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (47)

Start-Time: 2021-02-28 18:52:09,402

Finished-Time: 2021-02-28 18:52:09,406

Time-Consumption 0.004s

Testsummary:

Success Callback execution order: Values and number of submitted values is correct. See detailed log

for more information.

Testresult

This test was passed with the state: Success. See also full trace in section B.1.20!

24 / 66

Unittest for state machine

Testrun: python 3.8.5 (final)

Caller: /usr/data/dirk/prj/unittest/state machine/unittest/src/tests/ init .py (47)

Start-Time: 2021-02-28 18:52:11,617

Finished-Time: 2021-02-28 18:52:11,620

Time-Consumption 0.003s

Testsummary:

Success Callback execution order: Values and number of submitted values is correct. See detailed log

for more information.

25 / 66

Unittest for state machine

A Trace for testrun with python 2.7.18 (final)

A.1 Tests with status Info (20)

A.1.1 Default State

Description

The state machine shall start in the state, given while module initialisation.

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion

State machine is in the initial state after initialisation.

Testresult

This test was passed with the state: Success.

Info Initialising the state machine with state c

StateMachine: State change ('__init__'): None -> 'state_c'

Success State after initialisation is correct (Content ’state c’ and Type is <type ’str’>).

Result (State after initialisation): 'state_c' (<type 'str'>)

Expectation (State after initialisation): result = 'state_c' (<type 'str'>)

A.1.2 Default Last Transition Condtion

Description

The state machine shall return the string init for last transition condition after initalisation.

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion

The last transition condition is init after initialisation.

26 / 66

Unittest for state machine

Testresult

This test was passed with the state: Success.

Info Initialising the state machine with state c

StateMachine: State change ('__init__'): None -> 'state_c'

Success Last transition condition after initialisation is correct (Content ’ init ’ and Type is <type ’str’>).

Result (Last transition condition after initialisation): '__init__' (<type 'str'>)

Expectation (Last transition condition after initialisation): result = '__init__' (<type

'str'>)↪→

A.1.3 Default Previous State

Description

The state machine shall return None for previous state after initalisation.

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion

The previous state is None after initialisation.

Testresult

This test was passed with the state: Success.

Info Initialising the state machine with state c

StateMachine: State change ('__init__'): None -> 'state_c'

Success Last state after initialisation is correct (Content None and Type is <type ’NoneType’>).

Result (Last state after initialisation): None (<type 'NoneType'>)

Expectation (Last state after initialisation): result = None (<type 'NoneType'>)

A.1.4 Additional Keyword Arguments

Description

The state machine shall store all given keyword arguments as variables of the classes instance.

Reason for the implementation

Store further information (e.g. for calculation of the transition conditions).

27 / 66

Unittest for state machine

Fitcriterion

At least two given keyword arguments with different types are available after initialisation.

Testresult

This test was passed with the state: Success.

Info Initialising the state machine with state c

StateMachine: State change ('__init__'): None -> 'state_c'

Success Keyword argument kw arg no 4 stored in state machine is correct (Content {’1’: 1, ’2’: ’two’} and Type

is <type ’dict’>).

Result (Keyword argument kw_arg_no_4 stored in state_machine): { '1': 1, '2': 'two' } (<type

'dict'>)↪→

Expectation (Keyword argument kw_arg_no_4 stored in state_machine): result = { '1': 1, '2':

'two' } (<type 'dict'>)↪→

Success Keyword argument kw arg no 1 stored in state machine is correct (Content 1 and Type is <type ’int’>).

Result (Keyword argument kw_arg_no_1 stored in state_machine): 1 (<type 'int'>)

Expectation (Keyword argument kw_arg_no_1 stored in state_machine): result = 1 (<type 'int'>)

Success Keyword argument kw arg no 3 stored in state machine is correct (Content True and Type is <type

’bool’>).

Result (Keyword argument kw_arg_no_3 stored in state_machine): True (<type 'bool'>)

Expectation (Keyword argument kw_arg_no_3 stored in state_machine): result = True (<type

'bool'>)↪→

Success Keyword argument kw arg no 2 stored in state machine is correct (Content ’2’ and Type is <type ’str’>).

Result (Keyword argument kw_arg_no_2 stored in state_machine): '2' (<type 'str'>)

Expectation (Keyword argument kw_arg_no_2 stored in state_machine): result = '2' (<type

'str'>)↪→

A.1.5 Transitiondefinition and -flow

Description

The user shall be able to define multiple states and transitions for the state machine. A transition shall have a start

state, a target state and a transition condition. The transition condition shall be a method, where the user is able to

calculate the condition on demand.

Reason for the implementation

Definition of the transitions for a state machine.

28 / 66

Unittest for state machine

Fitcriterion

The order of at least three state changes is correct.

Testresult

This test was passed with the state: Success.

Info Initialising state machine with state a

StateMachine: State change ('__init__'): None -> 'state_a'

Success Initial state after Initialisation is correct (Content ’state a’ and Type is <type ’str’>).

Result (Initial state after Initialisation): 'state_a' (<type 'str'>)

Expectation (Initial state after Initialisation): result = 'state_a' (<type 'str'>)

Info Work routine executed the 1st time to do the state change. Defined Transitions are: True→state b (0.0s);

False→state c (0.0s)

StateMachine: State change ('condition_true'): 'state_a' -> 'state_b'

Success State after 1st execution of work method is correct (Content ’state b’ and Type is <type ’str’>).

Result (State after 1st execution of work method): 'state_b' (<type 'str'>)

Expectation (State after 1st execution of work method): result = 'state_b' (<type 'str'>)

Info Work routine executed the 2nd time to do the state change. Defined Transitions are: False→state a (0.0s);

True→state c (0.0s)

StateMachine: State change ('condition_true'): 'state_b' -> 'state_c'

Success State after 2nd execution of work method is correct (Content ’state c’ and Type is <type ’str’>).

Result (State after 2nd execution of work method): 'state_c' (<type 'str'>)

Expectation (State after 2nd execution of work method): result = 'state_c' (<type 'str'>)

Info Work routine executed the 3rd time with no effect. No Transitions starting from state c (dead end)

Success State after 3rd execution of work method is correct (Content ’state c’ and Type is <type ’str’>).

Result (State after 3rd execution of work method): 'state_c' (<type 'str'>)

Expectation (State after 3rd execution of work method): result = 'state_c' (<type 'str'>)

A.1.6 Transitiontiming

Description

The user shall be able to define for each transition a transition time. On change of the transition condition to True, the

transition timer starts counting the time from 0.0s. After reaching the transition time, the transition gets active.

29 / 66

Unittest for state machine

Reason for the implementation

Robustness of the state changes (e.g. Oscillating conditions shall be ignored).

Fitcriterion

The transition time and the restart of the transion timer by setting the transition condition to False and to True again

results in the expected transition timing (±0.05s).

Testresult

This test was passed with the state: Success.

Info Initialising state machine with state a

StateMachine: State change ('__init__'): None -> 'state_a'

Success Initial state after Initialisation is correct (Content ’state a’ and Type is <type ’str’>).

Result (Initial state after Initialisation): 'state_a' (<type 'str'>)

Expectation (Initial state after Initialisation): result = 'state_a' (<type 'str'>)

Info Waiting for 0.160s or state change

StateMachine: State change ('condition_true'): 'state_a' -> 'state_b'

Success State after 1st cycle is correct (Content ’state b’ and Type is <type ’str’>).

Result (State after 1st cycle): 'state_b' (<type 'str'>)

Expectation (State after 1st cycle): result = 'state_b' (<type 'str'>)

Success Transition time after 1st cycle is correct (Content 0.15063905715942383 in [0.145 ... 0.155] and Type is

<type ’float’>).

Result (Transition time after 1st cycle): 0.15063905715942383 (<type 'float'>)

Expectation (Transition time after 1st cycle): 0.145 <= result <= 0.155

Info Waiting for 0.235s or state change

StateMachine: State change ('condition_true'): 'state_b' -> 'state_c'

Success State after 2nd cycle is correct (Content ’state c’ and Type is <type ’str’>).

Result (State after 2nd cycle): 'state_c' (<type 'str'>)

Expectation (State after 2nd cycle): result = 'state_c' (<type 'str'>)

Success Transition time after 2nd cycle is correct (Content 0.1503770351409912 in [0.145 ... 0.155] and Type is

<type ’float’>).

Result (Transition time after 2nd cycle): 0.1503770351409912 (<type 'float'>)

30 / 66

Unittest for state machine

Expectation (Transition time after 2nd cycle): 0.145 <= result <= 0.155

Success Previous state duration is correct (Content 0.22572588920593262 in [0.21999999999999997 ...

0.22999999999999998] and Type is <type ’float’>).

Result (Previous state duration): 0.22572588920593262 (<type 'float'>)

Expectation (Previous state duration): 0.21999999999999997 <= result <= 0.22999999999999998

A.1.7 Transitionpriorisation

Description

The state machine shall use the first active transition. If multiple transition are active, the transition with the highest

overlap time will be used.

Reason for the implementation

Compensate the weakness of the execution quantisation.

Fitcriterion

At least one transition with at least two active conditions results in the expected state change.

Testresult

This test was passed with the state: Success.

Info Initialising state machine with state a, a transition to state b after 0.151s and a transition to state c after

0.150s

StateMachine: State change ('__init__'): None -> 'state_a'

Success Initial state after Initialisation is correct (Content ’state a’ and Type is <type ’str’>).

Result (Initial state after Initialisation): 'state_a' (<type 'str'>)

Expectation (Initial state after Initialisation): result = 'state_a' (<type 'str'>)

Info Waiting for 0.300s or state change

Executing method work after 0.000s

Executing method work after 0.060s

Executing method work after 0.121s

Executing method work after 0.182s

StateMachine: State change ('condition_true'): 'state_a' -> 'state_c'

Success State after 1st cycle is correct (Content ’state c’ and Type is <type ’str’>).

Result (State after 1st cycle): 'state_c' (<type 'str'>)

Expectation (State after 1st cycle): result = 'state_c' (<type 'str'>)

31 / 66

Unittest for state machine

A.1.8 This State

Description

The Module shall have a method for getting the current state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returend state fits to the expecation.

Testresult

This test was passed with the state: Success.

Info Initialising the state machine with state c

StateMachine: State change ('__init__'): None -> 'state_c'

Success Returnvalue of this state() is correct (Content ’state c’ and Type is <type ’str’>).

Result (Returnvalue of this_state()): 'state_c' (<type 'str'>)

Expectation (Returnvalue of this_state()): result = 'state_c' (<type 'str'>)

A.1.9 This State is

Description

The Module shall have a method for checking if the given state is currently active.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

Testresult

This test was passed with the state: Success.

Info Initialising the state machine with state c

StateMachine: State change ('__init__'): None -> 'state_c'

Success Returnvalue of this state is(state c) is correct (Content True and Type is <type ’bool’>).

Result (Returnvalue of this_state_is(state_c)): True (<type 'bool'>)

32 / 66

Unittest for state machine

Expectation (Returnvalue of this_state_is(state_c)): result = True (<type 'bool'>)

Success Returnvalue of this state is(state b) is correct (Content False and Type is <type ’bool’>).

Result (Returnvalue of this_state_is(state_b)): False (<type 'bool'>)

Expectation (Returnvalue of this_state_is(state_b)): result = False (<type 'bool'>)

A.1.10 This State Duration

Description

The Module shall have a method for getting the time since the last state change appears.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returned duration fits to the current state duration (± 0.05s).

Testresult

This test was passed with the state: Success.

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Waiting for 0.25s

Success Return Value of this state duration() is correct (Content 0.2516179084777832 in [0.2 ... 0.3] and Type

is <type ’float’>).

Result (Return Value of this_state_duration()): 0.2516179084777832 (<type 'float'>)

Expectation (Return Value of this_state_duration()): 0.2 <= result <= 0.3

A.1.11 Last Transition Condition

Description

The Module shall have a method for getting the last transition condition.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returned transition condition fits to the expectation.

33 / 66

Unittest for state machine

Testresult

This test was passed with the state: Success.

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Success Returnvalue of last transition condition() is correct (Content ’condition a’ and Type is <type ’str’>).

Result (Returnvalue of last_transition_condition()): 'condition_a' (<type 'str'>)

Expectation (Returnvalue of last_transition_condition()): result = 'condition_a' (<type

'str'>)↪→

A.1.12 Last Transition Condition was

Description

The Module shall have a method for checking if the given condition was the last transition condition.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

Testresult

This test was passed with the state: Success.

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Success Returnvalue of last transition condition(condition a) is correct (Content True and Type is <type ’bool’>).

Result (Returnvalue of last_transition_condition(condition_a)): True (<type 'bool'>)

Expectation (Returnvalue of last_transition_condition(condition_a)): result = True (<type

'bool'>)↪→

Success Returnvalue of last transition condition(condition c) is correct (Content False and Type is <type ’bool’>).

Result (Returnvalue of last_transition_condition(condition_c)): False (<type 'bool'>)

Expectation (Returnvalue of last_transition_condition(condition_c)): result = False (<type

'bool'>)↪→

34 / 66

Unittest for state machine

A.1.13 Previous State

Description

The Module shall have a method for getting the previous state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returend state fits to the expecation.

Testresult

This test was passed with the state: Success.

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Success Returnvalue of previous state() is correct (Content ’state a’ and Type is <type ’str’>).

Result (Returnvalue of previous_state()): 'state_a' (<type 'str'>)

Expectation (Returnvalue of previous_state()): result = 'state_a' (<type 'str'>)

A.1.14 Previous State was

Description

The Module shall have a method for checking if the given state was the previous state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

Testresult

This test was passed with the state: Success.

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

35 / 66

Unittest for state machine

Success Returnvalue of previous state was(state a) is correct (Content True and Type is <type ’bool’>).

Result (Returnvalue of previous_state_was(state_a)): True (<type 'bool'>)

Expectation (Returnvalue of previous_state_was(state_a)): result = True (<type 'bool'>)

Success Returnvalue of previous state was(state b) is correct (Content False and Type is <type ’bool’>).

Result (Returnvalue of previous_state_was(state_b)): False (<type 'bool'>)

Expectation (Returnvalue of previous_state_was(state_b)): result = False (<type 'bool'>)

A.1.15 Previous State Duration

Description

The Module shall have a method for getting active time for the previous state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returned duration fits to the previous state duration (± 0.05s).

Testresult

This test was passed with the state: Success.

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Waiting for 0.75s

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Success Return Value of previous state duration() is correct (Content 0.7519781589508057 in [0.7 ... 0.8] and

Type is <type ’float’>).

Result (Return Value of previous_state_duration()): 0.7519781589508057 (<type 'float'>)

Expectation (Return Value of previous_state_duration()): 0.7 <= result <= 0.8

A.1.16 State change callback for a defined transition and targetstate

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for a defined set of transition condition and target state.

36 / 66

Unittest for state machine

Reason for the implementation

Triggering state change actions for a specific transition condition and targetstate.

Fitcriterion

Methods are called in the registration order after state change with all user given arguments for the defined transition

condition and targetstate and at least for one other condition not.

Testresult

This test was passed with the state: Success.

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'

Increasing sequence number to 1 caused by sequence progress

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Executing callback 0 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 2 caused by callback_execution

Executing callback 1 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 3 caused by callback_execution

Increasing sequence number to 4 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Increasing sequence number to 5 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'

Increasing sequence number to 6 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Success Execution of state machine callback (1) (state b, condition a) identified by a sequence number: Values

and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (1) (state_b, condition_a) identified by a

sequence number): [1] (<type 'list'>)↪→

Expectation (Execution of state machine callback (1) (state_b, condition_a) identified by a

sequence number): result = [1] (<type 'list'>)↪→

Result (Submitted value number 1): 1 (<type 'int'>)

Expectation (Submitted value number 1): result = 1 (<type 'int'>)

Submitted value number 1 is correct (Content 1 and Type is <type 'int'>).

Success Execution of state machine callback (2) (state b, condition a) identified by a sequence number: Values

and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (2) (state_b, condition_a) identified by a

sequence number): [2] (<type 'list'>)↪→

Expectation (Execution of state machine callback (2) (state_b, condition_a) identified by a

sequence number): result = [2] (<type 'list'>)↪→

Result (Submitted value number 1): 2 (<type 'int'>)

Expectation (Submitted value number 1): result = 2 (<type 'int'>)

Submitted value number 1 is correct (Content 2 and Type is <type 'int'>).

37 / 66

Unittest for state machine

A.1.17 State change callback for a defined transition

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for a defined transition condition and all target states.

Reason for the implementation

Triggering state change actions for a specific transition condition.

Fitcriterion

Methods are called in the registration order after state change with all user given arguments for the defined transition

condition and at least for one other transition condition not.

Testresult

This test was passed with the state: Success.

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'

Increasing sequence number to 1 caused by sequence progress

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Increasing sequence number to 2 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Executing callback 0 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 3 caused by callback_execution

Executing callback 1 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 4 caused by callback_execution

Increasing sequence number to 5 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'

Executing callback 0 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 6 caused by callback_execution

Executing callback 1 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 7 caused by callback_execution

Increasing sequence number to 8 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Success Execution of state machine callback (1) (all transitions, condition b) identified by a sequence number:

Values and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (1) (all_transitions, condition_b) identified by

a sequence number): [2, 5] (<type 'list'>)↪→

Expectation (Execution of state machine callback (1) (all_transitions, condition_b)

identified by a sequence number): result = [2, 5] (<type 'list'>)↪→

Result (Submitted value number 1): 2 (<type 'int'>)

38 / 66

Unittest for state machine

Expectation (Submitted value number 1): result = 2 (<type 'int'>)

Submitted value number 1 is correct (Content 2 and Type is <type 'int'>).

Result (Submitted value number 2): 5 (<type 'int'>)

Expectation (Submitted value number 2): result = 5 (<type 'int'>)

Submitted value number 2 is correct (Content 5 and Type is <type 'int'>).

Success Execution of state machine callback (2) (all transitions, condition b) identified by a sequence number:

Values and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (2) (all_transitions, condition_b) identified by

a sequence number): [3, 6] (<type 'list'>)↪→

Expectation (Execution of state machine callback (2) (all_transitions, condition_b)

identified by a sequence number): result = [3, 6] (<type 'list'>)↪→

Result (Submitted value number 1): 3 (<type 'int'>)

Expectation (Submitted value number 1): result = 3 (<type 'int'>)

Submitted value number 1 is correct (Content 3 and Type is <type 'int'>).

Result (Submitted value number 2): 6 (<type 'int'>)

Expectation (Submitted value number 2): result = 6 (<type 'int'>)

Submitted value number 2 is correct (Content 6 and Type is <type 'int'>).

A.1.18 State change callback for a defined targetstate

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for all transition conditions and a defined target state.

Reason for the implementation

Triggering state change actions for a specific targetstate.

Fitcriterion

Methods are called in the registration order after state change with the defined targetstate and at least for one other

targetstate not.

Testresult

This test was passed with the state: Success.

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'

Increasing sequence number to 1 caused by sequence progress

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Executing callback 0 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 2 caused by callback_execution

Executing callback 1 - tests.test_callbacks.exec_with_counter

39 / 66

Unittest for state machine

Increasing sequence number to 3 caused by callback_execution

Increasing sequence number to 4 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Increasing sequence number to 5 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'

Executing callback 0 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 6 caused by callback_execution

Executing callback 1 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 7 caused by callback_execution

Increasing sequence number to 8 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Success Execution of state machine callback (1) (state b, all conditions) identified by a sequence number: Values

and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (1) (state_b, all_conditions) identified by a

sequence number): [1, 5] (<type 'list'>)↪→

Expectation (Execution of state machine callback (1) (state_b, all_conditions) identified by

a sequence number): result = [1, 5] (<type 'list'>)↪→

Result (Submitted value number 1): 1 (<type 'int'>)

Expectation (Submitted value number 1): result = 1 (<type 'int'>)

Submitted value number 1 is correct (Content 1 and Type is <type 'int'>).

Result (Submitted value number 2): 5 (<type 'int'>)

Expectation (Submitted value number 2): result = 5 (<type 'int'>)

Submitted value number 2 is correct (Content 5 and Type is <type 'int'>).

Success Execution of state machine callback (2) (state b, all conditions) identified by a sequence number: Values

and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (2) (state_b, all_conditions) identified by a

sequence number): [2, 6] (<type 'list'>)↪→

Expectation (Execution of state machine callback (2) (state_b, all_conditions) identified by

a sequence number): result = [2, 6] (<type 'list'>)↪→

Result (Submitted value number 1): 2 (<type 'int'>)

Expectation (Submitted value number 1): result = 2 (<type 'int'>)

Submitted value number 1 is correct (Content 2 and Type is <type 'int'>).

Result (Submitted value number 2): 6 (<type 'int'>)

Expectation (Submitted value number 2): result = 6 (<type 'int'>)

Submitted value number 2 is correct (Content 6 and Type is <type 'int'>).

A.1.19 State change callback for all kind of state changes

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for all transitions.

40 / 66

Unittest for state machine

Reason for the implementation

Triggering state change actions for all transition conditions and targetstates.

Fitcriterion

Methods are called in the registration order after state change.

Testresult

This test was passed with the state: Success.

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'

Increasing sequence number to 1 caused by sequence progress

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Executing callback 0 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 2 caused by callback_execution

Executing callback 1 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 3 caused by callback_execution

Increasing sequence number to 4 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Executing callback 0 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 5 caused by callback_execution

Executing callback 1 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 6 caused by callback_execution

Increasing sequence number to 7 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'

Executing callback 0 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 8 caused by callback_execution

Executing callback 1 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 9 caused by callback_execution

Increasing sequence number to 10 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Executing callback 0 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 11 caused by callback_execution

Executing callback 1 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 12 caused by callback_execution

Success Execution of state machine callback (1) (all transitions, all conditions) identified by a sequence number:

Values and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (1) (all_transitions, all_conditions) identified

by a sequence number): [1, 4, 7, 10] (<type 'list'>)↪→

41 / 66

Unittest for state machine

Expectation (Execution of state machine callback (1) (all_transitions, all_conditions)

identified by a sequence number): result = [1, 4, 7, 10] (<type 'list'>)↪→

Result (Submitted value number 1): 1 (<type 'int'>)

Expectation (Submitted value number 1): result = 1 (<type 'int'>)

Submitted value number 1 is correct (Content 1 and Type is <type 'int'>).

Result (Submitted value number 2): 4 (<type 'int'>)

Expectation (Submitted value number 2): result = 4 (<type 'int'>)

Submitted value number 2 is correct (Content 4 and Type is <type 'int'>).

Result (Submitted value number 3): 7 (<type 'int'>)

Expectation (Submitted value number 3): result = 7 (<type 'int'>)

Submitted value number 3 is correct (Content 7 and Type is <type 'int'>).

Result (Submitted value number 4): 10 (<type 'int'>)

Expectation (Submitted value number 4): result = 10 (<type 'int'>)

Submitted value number 4 is correct (Content 10 and Type is <type 'int'>).

Success Execution of state machine callback (2) (all transitions, all conditions) identified by a sequence number:

Values and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (2) (all_transitions, all_conditions) identified

by a sequence number): [2, 5, 8, 11] (<type 'list'>)↪→

Expectation (Execution of state machine callback (2) (all_transitions, all_conditions)

identified by a sequence number): result = [2, 5, 8, 11] (<type 'list'>)↪→

Result (Submitted value number 1): 2 (<type 'int'>)

Expectation (Submitted value number 1): result = 2 (<type 'int'>)

Submitted value number 1 is correct (Content 2 and Type is <type 'int'>).

Result (Submitted value number 2): 5 (<type 'int'>)

Expectation (Submitted value number 2): result = 5 (<type 'int'>)

Submitted value number 2 is correct (Content 5 and Type is <type 'int'>).

Result (Submitted value number 3): 8 (<type 'int'>)

Expectation (Submitted value number 3): result = 8 (<type 'int'>)

Submitted value number 3 is correct (Content 8 and Type is <type 'int'>).

Result (Submitted value number 4): 11 (<type 'int'>)

Expectation (Submitted value number 4): result = 11 (<type 'int'>)

Submitted value number 4 is correct (Content 11 and Type is <type 'int'>).

A.1.20 Execution order of Callbacks

Description

The callbacks shall be executed in the same order as they had been registered.

Reason for the implementation

User shall have the control about the execution order.

42 / 66

Unittest for state machine

Fitcriterion

A callback with specific targetstate and condition will be executed before a non specific callback if the specific one had

been regestered first.

Testresult

This test was passed with the state: Success.

Success Callback execution order: Values and number of submitted values is correct. See detailed log for more

information.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Executing callback 0 - unittest.test.report_value

Executing callback 2 - unittest.test.report_value

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Executing callback 1 - unittest.test.report_value

Executing callback 2 - unittest.test.report_value

Result (Callback execution order): ['specific callback for reaching state_b', 'nonspecific

callback', 'specific callback for reaching state_a', 'nonspecific callback'] (<type

'list'>)

↪→

↪→

Expectation (Callback execution order): result = ['specific callback for reaching state_b',

'nonspecific callback', 'specific callback for reaching state_a', 'nonspecific callback'

] (<type 'list'>)

↪→

↪→

Result (Submitted value number 1): 'specific callback for reaching state_b' (<type 'str'>)

Expectation (Submitted value number 1): result = 'specific callback for reaching state_b'

(<type 'str'>)↪→

Submitted value number 1 is correct (Content 'specific callback for reaching state_b' and

Type is <type 'str'>).↪→

Result (Submitted value number 2): 'nonspecific callback' (<type 'str'>)

Expectation (Submitted value number 2): result = 'nonspecific callback' (<type 'str'>)

Submitted value number 2 is correct (Content 'nonspecific callback' and Type is <type 'str'>).

Result (Submitted value number 3): 'specific callback for reaching state_a' (<type 'str'>)

Expectation (Submitted value number 3): result = 'specific callback for reaching state_a'

(<type 'str'>)↪→

Submitted value number 3 is correct (Content 'specific callback for reaching state_a' and

Type is <type 'str'>).↪→

Result (Submitted value number 4): 'nonspecific callback' (<type 'str'>)

Expectation (Submitted value number 4): result = 'nonspecific callback' (<type 'str'>)

Submitted value number 4 is correct (Content 'nonspecific callback' and Type is <type 'str'>).

43 / 66

Unittest for state machine

B Trace for testrun with python 3.8.5 (final)

B.1 Tests with status Info (20)

B.1.1 Default State

Description

The state machine shall start in the state, given while module initialisation.

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion

State machine is in the initial state after initialisation.

Testresult

This test was passed with the state: Success.

Info Initialising the state machine with state c

StateMachine: State change ('__init__'): None -> 'state_c'

Success State after initialisation is correct (Content ’state c’ and Type is <class ’str’>).

Result (State after initialisation): 'state_c' (<class 'str'>)

Expectation (State after initialisation): result = 'state_c' (<class 'str'>)

B.1.2 Default Last Transition Condtion

Description

The state machine shall return the string init for last transition condition after initalisation.

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion

The last transition condition is init after initialisation.

44 / 66

Unittest for state machine

Testresult

This test was passed with the state: Success.

Info Initialising the state machine with state c

StateMachine: State change ('__init__'): None -> 'state_c'

Success Last transition condition after initialisation is correct (Content ’ init ’ and Type is <class ’str’>).

Result (Last transition condition after initialisation): '__init__' (<class 'str'>)

Expectation (Last transition condition after initialisation): result = '__init__' (<class

'str'>)↪→

B.1.3 Default Previous State

Description

The state machine shall return None for previous state after initalisation.

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion

The previous state is None after initialisation.

Testresult

This test was passed with the state: Success.

Info Initialising the state machine with state c

StateMachine: State change ('__init__'): None -> 'state_c'

Success Last state after initialisation is correct (Content None and Type is <class ’NoneType’>).

Result (Last state after initialisation): None (<class 'NoneType'>)

Expectation (Last state after initialisation): result = None (<class 'NoneType'>)

B.1.4 Additional Keyword Arguments

Description

The state machine shall store all given keyword arguments as variables of the classes instance.

Reason for the implementation

Store further information (e.g. for calculation of the transition conditions).

45 / 66

Unittest for state machine

Fitcriterion

At least two given keyword arguments with different types are available after initialisation.

Testresult

This test was passed with the state: Success.

Info Initialising the state machine with state c

StateMachine: State change ('__init__'): None -> 'state_c'

Success Keyword argument kw arg no 1 stored in state machine is correct (Content 1 and Type is <class ’int’>).

Result (Keyword argument kw_arg_no_1 stored in state_machine): 1 (<class 'int'>)

Expectation (Keyword argument kw_arg_no_1 stored in state_machine): result = 1 (<class 'int'>)

Success Keyword argument kw arg no 2 stored in state machine is correct (Content ’2’ and Type is <class ’str’>).

Result (Keyword argument kw_arg_no_2 stored in state_machine): '2' (<class 'str'>)

Expectation (Keyword argument kw_arg_no_2 stored in state_machine): result = '2' (<class

'str'>)↪→

Success Keyword argument kw arg no 3 stored in state machine is correct (Content True and Type is <class

’bool’>).

Result (Keyword argument kw_arg_no_3 stored in state_machine): True (<class 'bool'>)

Expectation (Keyword argument kw_arg_no_3 stored in state_machine): result = True (<class

'bool'>)↪→

Success Keyword argument kw arg no 4 stored in state machine is correct (Content {’1’: 1, ’2’: ’two’} and Type

is <class ’dict’>).

Result (Keyword argument kw_arg_no_4 stored in state_machine): { '1': 1, '2': 'two' } (<class

'dict'>)↪→

Expectation (Keyword argument kw_arg_no_4 stored in state_machine): result = { '1': 1, '2':

'two' } (<class 'dict'>)↪→

B.1.5 Transitiondefinition and -flow

Description

The user shall be able to define multiple states and transitions for the state machine. A transition shall have a start

state, a target state and a transition condition. The transition condition shall be a method, where the user is able to

calculate the condition on demand.

Reason for the implementation

Definition of the transitions for a state machine.

46 / 66

Unittest for state machine

Fitcriterion

The order of at least three state changes is correct.

Testresult

This test was passed with the state: Success.

Info Initialising state machine with state a

StateMachine: State change ('__init__'): None -> 'state_a'

Success Initial state after Initialisation is correct (Content ’state a’ and Type is <class ’str’>).

Result (Initial state after Initialisation): 'state_a' (<class 'str'>)

Expectation (Initial state after Initialisation): result = 'state_a' (<class 'str'>)

Info Work routine executed the 1st time to do the state change. Defined Transitions are: True→state b (0.0s);

False→state c (0.0s)

StateMachine: State change ('condition_true'): 'state_a' -> 'state_b'

Success State after 1st execution of work method is correct (Content ’state b’ and Type is <class ’str’>).

Result (State after 1st execution of work method): 'state_b' (<class 'str'>)

Expectation (State after 1st execution of work method): result = 'state_b' (<class 'str'>)

Info Work routine executed the 2nd time to do the state change. Defined Transitions are: False→state a (0.0s);

True→state c (0.0s)

StateMachine: State change ('condition_true'): 'state_b' -> 'state_c'

Success State after 2nd execution of work method is correct (Content ’state c’ and Type is <class ’str’>).

Result (State after 2nd execution of work method): 'state_c' (<class 'str'>)

Expectation (State after 2nd execution of work method): result = 'state_c' (<class 'str'>)

Info Work routine executed the 3rd time with no effect. No Transitions starting from state c (dead end)

Success State after 3rd execution of work method is correct (Content ’state c’ and Type is <class ’str’>).

Result (State after 3rd execution of work method): 'state_c' (<class 'str'>)

Expectation (State after 3rd execution of work method): result = 'state_c' (<class 'str'>)

B.1.6 Transitiontiming

Description

The user shall be able to define for each transition a transition time. On change of the transition condition to True, the

transition timer starts counting the time from 0.0s. After reaching the transition time, the transition gets active.

47 / 66

Unittest for state machine

Reason for the implementation

Robustness of the state changes (e.g. Oscillating conditions shall be ignored).

Fitcriterion

The transition time and the restart of the transion timer by setting the transition condition to False and to True again

results in the expected transition timing (±0.05s).

Testresult

This test was passed with the state: Success.

Info Initialising state machine with state a

StateMachine: State change ('__init__'): None -> 'state_a'

Success Initial state after Initialisation is correct (Content ’state a’ and Type is <class ’str’>).

Result (Initial state after Initialisation): 'state_a' (<class 'str'>)

Expectation (Initial state after Initialisation): result = 'state_a' (<class 'str'>)

Info Waiting for 0.160s or state change

StateMachine: State change ('condition_true'): 'state_a' -> 'state_b'

Success State after 1st cycle is correct (Content ’state b’ and Type is <class ’str’>).

Result (State after 1st cycle): 'state_b' (<class 'str'>)

Expectation (State after 1st cycle): result = 'state_b' (<class 'str'>)

Success Transition time after 1st cycle is correct (Content 0.150407075881958 in [0.145 ... 0.155] and Type is

<class ’float’>).

Result (Transition time after 1st cycle): 0.150407075881958 (<class 'float'>)

Expectation (Transition time after 1st cycle): 0.145 <= result <= 0.155

Info Waiting for 0.235s or state change

StateMachine: State change ('condition_true'): 'state_b' -> 'state_c'

Success State after 2nd cycle is correct (Content ’state c’ and Type is <class ’str’>).

Result (State after 2nd cycle): 'state_c' (<class 'str'>)

Expectation (State after 2nd cycle): result = 'state_c' (<class 'str'>)

Success Transition time after 2nd cycle is correct (Content 0.15027642250061035 in [0.145 ... 0.155] and Type

is <class ’float’>).

Result (Transition time after 2nd cycle): 0.15027642250061035 (<class 'float'>)

48 / 66

Unittest for state machine

Expectation (Transition time after 2nd cycle): 0.145 <= result <= 0.155

Success Previous state duration is correct (Content 0.22556781768798828 in [0.21999999999999997 ...

0.22999999999999998] and Type is <class ’float’>).

Result (Previous state duration): 0.22556781768798828 (<class 'float'>)

Expectation (Previous state duration): 0.21999999999999997 <= result <= 0.22999999999999998

B.1.7 Transitionpriorisation

Description

The state machine shall use the first active transition. If multiple transition are active, the transition with the highest

overlap time will be used.

Reason for the implementation

Compensate the weakness of the execution quantisation.

Fitcriterion

At least one transition with at least two active conditions results in the expected state change.

Testresult

This test was passed with the state: Success.

Info Initialising state machine with state a, a transition to state b after 0.151s and a transition to state c after

0.150s

StateMachine: State change ('__init__'): None -> 'state_a'

Success Initial state after Initialisation is correct (Content ’state a’ and Type is <class ’str’>).

Result (Initial state after Initialisation): 'state_a' (<class 'str'>)

Expectation (Initial state after Initialisation): result = 'state_a' (<class 'str'>)

Info Waiting for 0.300s or state change

Executing method work after 0.000s

Executing method work after 0.060s

Executing method work after 0.121s

Executing method work after 0.182s

StateMachine: State change ('condition_true'): 'state_a' -> 'state_c'

Success State after 1st cycle is correct (Content ’state c’ and Type is <class ’str’>).

Result (State after 1st cycle): 'state_c' (<class 'str'>)

Expectation (State after 1st cycle): result = 'state_c' (<class 'str'>)

49 / 66

Unittest for state machine

B.1.8 This State

Description

The Module shall have a method for getting the current state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returend state fits to the expecation.

Testresult

This test was passed with the state: Success.

Info Initialising the state machine with state c

StateMachine: State change ('__init__'): None -> 'state_c'

Success Returnvalue of this state() is correct (Content ’state c’ and Type is <class ’str’>).

Result (Returnvalue of this_state()): 'state_c' (<class 'str'>)

Expectation (Returnvalue of this_state()): result = 'state_c' (<class 'str'>)

B.1.9 This State is

Description

The Module shall have a method for checking if the given state is currently active.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

Testresult

This test was passed with the state: Success.

Info Initialising the state machine with state c

StateMachine: State change ('__init__'): None -> 'state_c'

Success Returnvalue of this state is(state c) is correct (Content True and Type is <class ’bool’>).

Result (Returnvalue of this_state_is(state_c)): True (<class 'bool'>)

50 / 66

Unittest for state machine

Expectation (Returnvalue of this_state_is(state_c)): result = True (<class 'bool'>)

Success Returnvalue of this state is(state b) is correct (Content False and Type is <class ’bool’>).

Result (Returnvalue of this_state_is(state_b)): False (<class 'bool'>)

Expectation (Returnvalue of this_state_is(state_b)): result = False (<class 'bool'>)

B.1.10 This State Duration

Description

The Module shall have a method for getting the time since the last state change appears.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returned duration fits to the current state duration (± 0.05s).

Testresult

This test was passed with the state: Success.

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Waiting for 0.25s

Success Return Value of this state duration() is correct (Content 0.2513155937194824 in [0.2 ... 0.3] and Type

is <class ’float’>).

Result (Return Value of this_state_duration()): 0.2513155937194824 (<class 'float'>)

Expectation (Return Value of this_state_duration()): 0.2 <= result <= 0.3

B.1.11 Last Transition Condition

Description

The Module shall have a method for getting the last transition condition.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returned transition condition fits to the expectation.

51 / 66

Unittest for state machine

Testresult

This test was passed with the state: Success.

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Success Returnvalue of last transition condition() is correct (Content ’condition a’ and Type is <class ’str’>).

Result (Returnvalue of last_transition_condition()): 'condition_a' (<class 'str'>)

Expectation (Returnvalue of last_transition_condition()): result = 'condition_a' (<class

'str'>)↪→

B.1.12 Last Transition Condition was

Description

The Module shall have a method for checking if the given condition was the last transition condition.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

Testresult

This test was passed with the state: Success.

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Success Returnvalue of last transition condition(condition a) is correct (Content True and Type is <class ’bool’>).

Result (Returnvalue of last_transition_condition(condition_a)): True (<class 'bool'>)

Expectation (Returnvalue of last_transition_condition(condition_a)): result = True (<class

'bool'>)↪→

Success Returnvalue of last transition condition(condition c) is correct (Content False and Type is <class

’bool’>).

Result (Returnvalue of last_transition_condition(condition_c)): False (<class 'bool'>)

Expectation (Returnvalue of last_transition_condition(condition_c)): result = False (<class

'bool'>)↪→

52 / 66

Unittest for state machine

B.1.13 Previous State

Description

The Module shall have a method for getting the previous state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returend state fits to the expecation.

Testresult

This test was passed with the state: Success.

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Success Returnvalue of previous state() is correct (Content ’state a’ and Type is <class ’str’>).

Result (Returnvalue of previous_state()): 'state_a' (<class 'str'>)

Expectation (Returnvalue of previous_state()): result = 'state_a' (<class 'str'>)

B.1.14 Previous State was

Description

The Module shall have a method for checking if the given state was the previous state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

Testresult

This test was passed with the state: Success.

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

53 / 66

Unittest for state machine

Success Returnvalue of previous state was(state a) is correct (Content True and Type is <class ’bool’>).

Result (Returnvalue of previous_state_was(state_a)): True (<class 'bool'>)

Expectation (Returnvalue of previous_state_was(state_a)): result = True (<class 'bool'>)

Success Returnvalue of previous state was(state b) is correct (Content False and Type is <class ’bool’>).

Result (Returnvalue of previous_state_was(state_b)): False (<class 'bool'>)

Expectation (Returnvalue of previous_state_was(state_b)): result = False (<class 'bool'>)

B.1.15 Previous State Duration

Description

The Module shall have a method for getting active time for the previous state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returned duration fits to the previous state duration (± 0.05s).

Testresult

This test was passed with the state: Success.

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Waiting for 0.75s

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Success Return Value of previous state duration() is correct (Content 0.7517855167388916 in [0.7 ... 0.8] and

Type is <class ’float’>).

Result (Return Value of previous_state_duration()): 0.7517855167388916 (<class 'float'>)

Expectation (Return Value of previous_state_duration()): 0.7 <= result <= 0.8

B.1.16 State change callback for a defined transition and targetstate

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for a defined set of transition condition and target state.

54 / 66

Unittest for state machine

Reason for the implementation

Triggering state change actions for a specific transition condition and targetstate.

Fitcriterion

Methods are called in the registration order after state change with all user given arguments for the defined transition

condition and targetstate and at least for one other condition not.

Testresult

This test was passed with the state: Success.

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'

Increasing sequence number to 1 caused by sequence progress

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Executing callback 0 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 2 caused by callback_execution

Executing callback 1 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 3 caused by callback_execution

Increasing sequence number to 4 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Increasing sequence number to 5 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'

Increasing sequence number to 6 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Success Execution of state machine callback (1) (state b, condition a) identified by a sequence number: Values

and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (1) (state_b, condition_a) identified by a

sequence number): [1] (<class 'list'>)↪→

Expectation (Execution of state machine callback (1) (state_b, condition_a) identified by a

sequence number): result = [1] (<class 'list'>)↪→

Result (Submitted value number 1): 1 (<class 'int'>)

Expectation (Submitted value number 1): result = 1 (<class 'int'>)

Submitted value number 1 is correct (Content 1 and Type is <class 'int'>).

Success Execution of state machine callback (2) (state b, condition a) identified by a sequence number: Values

and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (2) (state_b, condition_a) identified by a

sequence number): [2] (<class 'list'>)↪→

Expectation (Execution of state machine callback (2) (state_b, condition_a) identified by a

sequence number): result = [2] (<class 'list'>)↪→

Result (Submitted value number 1): 2 (<class 'int'>)

Expectation (Submitted value number 1): result = 2 (<class 'int'>)

Submitted value number 1 is correct (Content 2 and Type is <class 'int'>).

55 / 66

Unittest for state machine

B.1.17 State change callback for a defined transition

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for a defined transition condition and all target states.

Reason for the implementation

Triggering state change actions for a specific transition condition.

Fitcriterion

Methods are called in the registration order after state change with all user given arguments for the defined transition

condition and at least for one other transition condition not.

Testresult

This test was passed with the state: Success.

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'

Increasing sequence number to 1 caused by sequence progress

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Increasing sequence number to 2 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Executing callback 0 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 3 caused by callback_execution

Executing callback 1 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 4 caused by callback_execution

Increasing sequence number to 5 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'

Executing callback 0 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 6 caused by callback_execution

Executing callback 1 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 7 caused by callback_execution

Increasing sequence number to 8 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Success Execution of state machine callback (1) (all transitions, condition b) identified by a sequence number:

Values and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (1) (all_transitions, condition_b) identified by

a sequence number): [2, 5] (<class 'list'>)↪→

Expectation (Execution of state machine callback (1) (all_transitions, condition_b)

identified by a sequence number): result = [2, 5] (<class 'list'>)↪→

Result (Submitted value number 1): 2 (<class 'int'>)

56 / 66

Unittest for state machine

Expectation (Submitted value number 1): result = 2 (<class 'int'>)

Submitted value number 1 is correct (Content 2 and Type is <class 'int'>).

Result (Submitted value number 2): 5 (<class 'int'>)

Expectation (Submitted value number 2): result = 5 (<class 'int'>)

Submitted value number 2 is correct (Content 5 and Type is <class 'int'>).

Success Execution of state machine callback (2) (all transitions, condition b) identified by a sequence number:

Values and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (2) (all_transitions, condition_b) identified by

a sequence number): [3, 6] (<class 'list'>)↪→

Expectation (Execution of state machine callback (2) (all_transitions, condition_b)

identified by a sequence number): result = [3, 6] (<class 'list'>)↪→

Result (Submitted value number 1): 3 (<class 'int'>)

Expectation (Submitted value number 1): result = 3 (<class 'int'>)

Submitted value number 1 is correct (Content 3 and Type is <class 'int'>).

Result (Submitted value number 2): 6 (<class 'int'>)

Expectation (Submitted value number 2): result = 6 (<class 'int'>)

Submitted value number 2 is correct (Content 6 and Type is <class 'int'>).

B.1.18 State change callback for a defined targetstate

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for all transition conditions and a defined target state.

Reason for the implementation

Triggering state change actions for a specific targetstate.

Fitcriterion

Methods are called in the registration order after state change with the defined targetstate and at least for one other

targetstate not.

Testresult

This test was passed with the state: Success.

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'

Increasing sequence number to 1 caused by sequence progress

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Executing callback 0 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 2 caused by callback_execution

Executing callback 1 - tests.test_callbacks.exec_with_counter

57 / 66

Unittest for state machine

Increasing sequence number to 3 caused by callback_execution

Increasing sequence number to 4 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Increasing sequence number to 5 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'

Executing callback 0 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 6 caused by callback_execution

Executing callback 1 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 7 caused by callback_execution

Increasing sequence number to 8 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Success Execution of state machine callback (1) (state b, all conditions) identified by a sequence number: Values

and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (1) (state_b, all_conditions) identified by a

sequence number): [1, 5] (<class 'list'>)↪→

Expectation (Execution of state machine callback (1) (state_b, all_conditions) identified by

a sequence number): result = [1, 5] (<class 'list'>)↪→

Result (Submitted value number 1): 1 (<class 'int'>)

Expectation (Submitted value number 1): result = 1 (<class 'int'>)

Submitted value number 1 is correct (Content 1 and Type is <class 'int'>).

Result (Submitted value number 2): 5 (<class 'int'>)

Expectation (Submitted value number 2): result = 5 (<class 'int'>)

Submitted value number 2 is correct (Content 5 and Type is <class 'int'>).

Success Execution of state machine callback (2) (state b, all conditions) identified by a sequence number: Values

and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (2) (state_b, all_conditions) identified by a

sequence number): [2, 6] (<class 'list'>)↪→

Expectation (Execution of state machine callback (2) (state_b, all_conditions) identified by

a sequence number): result = [2, 6] (<class 'list'>)↪→

Result (Submitted value number 1): 2 (<class 'int'>)

Expectation (Submitted value number 1): result = 2 (<class 'int'>)

Submitted value number 1 is correct (Content 2 and Type is <class 'int'>).

Result (Submitted value number 2): 6 (<class 'int'>)

Expectation (Submitted value number 2): result = 6 (<class 'int'>)

Submitted value number 2 is correct (Content 6 and Type is <class 'int'>).

B.1.19 State change callback for all kind of state changes

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for all transitions.

58 / 66

Unittest for state machine

Reason for the implementation

Triggering state change actions for all transition conditions and targetstates.

Fitcriterion

Methods are called in the registration order after state change.

Testresult

This test was passed with the state: Success.

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'

Increasing sequence number to 1 caused by sequence progress

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Executing callback 0 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 2 caused by callback_execution

Executing callback 1 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 3 caused by callback_execution

Increasing sequence number to 4 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Executing callback 0 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 5 caused by callback_execution

Executing callback 1 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 6 caused by callback_execution

Increasing sequence number to 7 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'

Executing callback 0 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 8 caused by callback_execution

Executing callback 1 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 9 caused by callback_execution

Increasing sequence number to 10 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Executing callback 0 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 11 caused by callback_execution

Executing callback 1 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 12 caused by callback_execution

Success Execution of state machine callback (1) (all transitions, all conditions) identified by a sequence number:

Values and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (1) (all_transitions, all_conditions) identified

by a sequence number): [1, 4, 7, 10] (<class 'list'>)↪→

59 / 66

Unittest for state machine

Expectation (Execution of state machine callback (1) (all_transitions, all_conditions)

identified by a sequence number): result = [1, 4, 7, 10] (<class 'list'>)↪→

Result (Submitted value number 1): 1 (<class 'int'>)

Expectation (Submitted value number 1): result = 1 (<class 'int'>)

Submitted value number 1 is correct (Content 1 and Type is <class 'int'>).

Result (Submitted value number 2): 4 (<class 'int'>)

Expectation (Submitted value number 2): result = 4 (<class 'int'>)

Submitted value number 2 is correct (Content 4 and Type is <class 'int'>).

Result (Submitted value number 3): 7 (<class 'int'>)

Expectation (Submitted value number 3): result = 7 (<class 'int'>)

Submitted value number 3 is correct (Content 7 and Type is <class 'int'>).

Result (Submitted value number 4): 10 (<class 'int'>)

Expectation (Submitted value number 4): result = 10 (<class 'int'>)

Submitted value number 4 is correct (Content 10 and Type is <class 'int'>).

Success Execution of state machine callback (2) (all transitions, all conditions) identified by a sequence number:

Values and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (2) (all_transitions, all_conditions) identified

by a sequence number): [2, 5, 8, 11] (<class 'list'>)↪→

Expectation (Execution of state machine callback (2) (all_transitions, all_conditions)

identified by a sequence number): result = [2, 5, 8, 11] (<class 'list'>)↪→

Result (Submitted value number 1): 2 (<class 'int'>)

Expectation (Submitted value number 1): result = 2 (<class 'int'>)

Submitted value number 1 is correct (Content 2 and Type is <class 'int'>).

Result (Submitted value number 2): 5 (<class 'int'>)

Expectation (Submitted value number 2): result = 5 (<class 'int'>)

Submitted value number 2 is correct (Content 5 and Type is <class 'int'>).

Result (Submitted value number 3): 8 (<class 'int'>)

Expectation (Submitted value number 3): result = 8 (<class 'int'>)

Submitted value number 3 is correct (Content 8 and Type is <class 'int'>).

Result (Submitted value number 4): 11 (<class 'int'>)

Expectation (Submitted value number 4): result = 11 (<class 'int'>)

Submitted value number 4 is correct (Content 11 and Type is <class 'int'>).

B.1.20 Execution order of Callbacks

Description

The callbacks shall be executed in the same order as they had been registered.

Reason for the implementation

User shall have the control about the execution order.

60 / 66

Unittest for state machine

Fitcriterion

A callback with specific targetstate and condition will be executed before a non specific callback if the specific one had

been regestered first.

Testresult

This test was passed with the state: Success.

Success Callback execution order: Values and number of submitted values is correct. See detailed log for more

information.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Executing callback 0 - unittest.test.report_value

Executing callback 2 - unittest.test.report_value

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Executing callback 1 - unittest.test.report_value

Executing callback 2 - unittest.test.report_value

Result (Callback execution order): ['specific callback for reaching state_b', 'nonspecific

callback', 'specific callback for reaching state_a', 'nonspecific callback'] (<class

'list'>)

↪→

↪→

Expectation (Callback execution order): result = ['specific callback for reaching state_b',

'nonspecific callback', 'specific callback for reaching state_a', 'nonspecific callback'

] (<class 'list'>)

↪→

↪→

Result (Submitted value number 1): 'specific callback for reaching state_b' (<class 'str'>)

Expectation (Submitted value number 1): result = 'specific callback for reaching state_b'

(<class 'str'>)↪→

Submitted value number 1 is correct (Content 'specific callback for reaching state_b' and

Type is <class 'str'>).↪→

Result (Submitted value number 2): 'nonspecific callback' (<class 'str'>)

Expectation (Submitted value number 2): result = 'nonspecific callback' (<class 'str'>)

Submitted value number 2 is correct (Content 'nonspecific callback' and Type is <class

'str'>).↪→

Result (Submitted value number 3): 'specific callback for reaching state_a' (<class 'str'>)

Expectation (Submitted value number 3): result = 'specific callback for reaching state_a'

(<class 'str'>)↪→

Submitted value number 3 is correct (Content 'specific callback for reaching state_a' and

Type is <class 'str'>).↪→

Result (Submitted value number 4): 'nonspecific callback' (<class 'str'>)

Expectation (Submitted value number 4): result = 'nonspecific callback' (<class 'str'>)

Submitted value number 4 is correct (Content 'nonspecific callback' and Type is <class

'str'>).↪→

61 / 66

Unittest for state machine

C Test-Coverage

C.1 state machine

The line coverage for state machine was 100.0%

The branch coverage for state machine was 100.0%

C.1.1 state machine. init .py

The line coverage for state machine. init .py was 100.0%

The branch coverage for state machine. init .py was 100.0%

1 #!/ u s r / b i n / env python

2 # −*− cod ing : u t f−8 −*−
3 #

4 ”””

5 s t a t e mach i n e (S ta t e Machine)

6 =============================

7

8 **Author :**

9

10 * Dirk A l d e r s <sudo−dirk@mount−mockery . de>

11

12 ** De s c r i p t i o n :**

13

14 This Module h e l p s imp lement ing s t a t e machines .

15

16 **Submodules :**

17

18 * : c l a s s : ` s t a t e mach i n e . s t a t e mach ine `

19

20 ** Un i t t e s t :**

21

22 See a l s o the : download : ` u n i t t e s t <s t a t e mach i n e / t e s t r e s u l t s / u n i t t e s t . pdf>` documentat ion .

23

24 **Module Documentat ion :**

25

26 ”””

27 DEPENDENCIES = []

28

29 impor t l o g g i n g

30 impor t t ime

31

32

33 t r y :

34 from c o n f i g impor t APP NAME as ROOT LOGGER NAME

35 excep t Impo r tE r r o r :

36 ROOT LOGGER NAME = ' r o o t '

37 l o g g e r = l o g g i n g . ge tLogge r (ROOT LOGGER NAME) . g e tCh i l d (name)

38

39

40 INTERPRETER = (2 , 3)

41 ”””The suppo r t ed I n t e r p r e t e r −Ve r s i o n s ”””

42 DESCRIPTION = ””” This Module h e l p s imp lement ing s t a t e machines . ”””

43 ”””The Module d e s c r i p t i o n ”””

44

45

46 c l a s s s t a t e mach i n e (o b j e c t) :

62 / 66

Unittest for state machine

47 ”””

48 : param d e f a u l t s t a t e : The d e f a u l t s t a t e which i s s e t on i n i t i a l i s a t i o n .

49 : param l o g l v l : The l o g l e v e l , t h i s Module l o g s to (s e e Loging−L e v e l s o f Module :mod: ` l o gg i ng

`)

50

51 . . note : : A d d i t i o n a l keyword pa ramete r s w e l l be s t o r e d as v a r i b l e s o f the i n s t a n c e (e . g . to

g i v e v a r i a b l e s o r methods f o r t r a n s i t i o n c o n d i t i o n c a l c u l a t i o n) .

52

53 A s t a t e machine c l a s s can be c r e a t e d by d e r i v i n g i t from t h i s c l a s s . The t r a n s i t i o n s a r e

d e f i n e d by o v e r r i d i n g the v a r i a b l e `TRANSITIONS ` .

54 This V a r i a b l e i s a d i c t i o n a r y , where the key i s the s t a r t−s t a t e and the con t en t i s a t u p l e o r

l i s t o f t r a n s i t i o n s . Each t r a n s i t i o n i s a t u p l e o r l i s t

55 i n c l u d i n g the f o l l o w i n g i n f o rma t i o n : (c ond i t i o n−method (s t r) , t r a n s i t i o n −t ime (number) ,

t a r g e t s t a t e (s t r)) .

56

57 . . note : : The cond i t i o n−method needs to be implemented as pa r t o f the new c l a s s .

58

59 . . note : : I t i s u s e f u l l to d e f i n e the s t a t e s as v a r i a b l e s o f t h i s c l a s s .

60

61

62 **Example :**

63

64 . . l i t e r a l i n c l u d e : : s t a t e mach i n e / e xamp l e s / example . py

65

66 . . l i t e r a l i n c l u d e : : s t a t e mach i n e / e xamp l e s / example . l o g

67 ”””

68 TRANSITIONS = {}
69 LOG PREFIX = ' StateMach ine : '

70

71 de f i n i t (s e l f , d e f a u l t s t a t e , l o g l v l , ** kwargs) :

72 s e l f . s t a t e = None

73 s e l f . l a s t t r a n s i t i o n c o n d i t i o n = None

74 s e l f . c o n d i t i o n s s t a r t t i m e = {}
75 s e l f . s t a t e c h a n g e c a l l b a c k s = {}
76 s e l f . l o g l v l = l o g l v l

77 s e l f . s e t s t a t e (d e f a u l t s t a t e , ' i n i t ')

78 s e l f . c a l l b a c k i d = 0

79 f o r key i n kwargs :

80 s e t a t t r (s e l f , key , kwargs . ge t (key))

81

82 de f r e g i s t e r s t a t e c h a n g e c a l l b a c k (s e l f , s t a t e , c ond i t i o n , c a l l b a c k , * args , ** kwargs) :

83 ”””

84 : param s t a t e : The t a r g e t s t a t e . The c a l l b a c k w i l l be executed , i f the s t a t e machine

changes to t h i s s t a t e . None means a l l s t a t e s .

85 : t ype s t a t e : s t r

86 : param c o n d i t i o n : The t r a n s i t i o n c o n d i t i o n . The c a l l b a c k w i l l be executed , i f t h i s

c o n d i t i o n i s r e s p o n s i b l e f o r the s t a t e change . None means a l l c o n d i t i o n s .

87 : t ype c o n d i t i o n : s t r

88 : param c a l l b a c k : The c a l l b a c k to be execu ted .

89

90 . . note : : A d d i t i o n a l arguments and keyword pa ramete r s a r e suppo r t ed . These arguments and

pa ramete r s w i l l be used as arguments and pa ramete r s f o r the c a l l b a c k e x e c u t i o n .

91

92 This methods a l l ow s to r e g i s t e r c a l l b a c k s which w i l l be execu t ed on s t a t e changes .

93 ”””

94 i f s t a t e not i n s e l f . s t a t e c h a n g e c a l l b a c k s :

95 s e l f . s t a t e c h a n g e c a l l b a c k s [s t a t e] = {}
96 i f c o n d i t i o n not i n s e l f . s t a t e c h a n g e c a l l b a c k s [s t a t e] :

97 s e l f . s t a t e c h a n g e c a l l b a c k s [s t a t e] [c o n d i t i o n] = []

98 s e l f . s t a t e c h a n g e c a l l b a c k s [s t a t e] [c o n d i t i o n] . append ((s e l f . c a l l b a c k i d , c a l l b a c k ,

a rgs , kwargs))

99 s e l f . c a l l b a c k i d += 1

63 / 66

Unittest for state machine

100

101 de f t h i s s t a t e (s e l f) :

102 ”””

103 : r e t u r n : The c u r r e n t s t a t e .

104

105 This method r e t u r n s the c u r r e n t s t a t e o f the s t a t e machine .

106 ”””

107 r e t u r n s e l f . s t a t e

108

109 de f t h i s s t a t e i s (s e l f , s t a t e) :

110 ”””

111 : param s t a t e : The s t a t e to be checked

112 : t ype s t a t e : s t r

113 : r e t u r n : True i f the g i v en s t a t e i s c u r r e n t l y a c t i v e , e l s e F a l s e .

114 : r t y p e : boo l

115

116 This methods r e t u r n s the boo l ean i n f o rma t i o n i f the s t a t e machine i s c u r r e n t l y i n the

g i v en s t a t e .

117 ”””

118 r e t u r n s e l f . s t a t e == s t a t e

119

120 de f t h i s s t a t e d u r a t i o n (s e l f) :

121 ”””

122 : r e t u r n : The t ime how long the c u r r e n t s t a t e i s a c t i v e .

123 : r t y p e : f l o a t

124

125 This method r e t u r n s the t ime how long the c u r r e n t s t a t e i s a c t i v e .

126 ”””

127 r e t u r n t ime . t ime () − s e l f . t im e s t amp s t a t e c h a n g e

128

129 de f l a s t t r a n s i t i o n c o n d i t i o n (s e l f) :

130 ”””

131 : r e t u r n : The l a s t t r a n s i t i o n c o n d i t i o n .

132 : r t y p e : s t r

133

134 This method r e t u r n s the l a s t t r a n s i t i o n c o n d i t i o n .

135 ”””

136 r e t u r n s e l f . l a s t t r a n s i t i o n c o n d i t i o n

137

138 de f l a s t t r a n s i t i o n c o n d i t i o n w a s (s e l f , c o n d i t i o n) :

139 ”””

140 : param c o n d i t i o n : The c o n d i t i o n to be checked

141 : t ype c o n d i t i o n : s t r

142 : r e t u r n : True i f the g i v en c o n d i t i o n was the l a s t t r a n s i t i o n cond i t i o n , e l s e F a l s e .

143 : r t y p e : boo l

144

145 This methods r e t u r n s the boo l ean i n f o rma t i o n i f the l a s t t r a n s i t i o n c o n d i t i o n i s

e q u i v a l e n t to the g i v en c o n d i t i o n .

146 ”””

147 r e t u r n s e l f . l a s t t r a n s i t i o n c o n d i t i o n == cond i t i o n

148

149 de f p r e v i o u s s t a t e (s e l f) :

150 ”””

151 : r e t u r n : The p r e v i o u s s t a t e .

152 : r t y p e : s t r

153

154 This method r e t u r n s the p r e v i o u s s t a t e o f the s t a t e machine .

155 ”””

156 r e t u r n s e l f . p r e v s t a t e

157

158 de f p r e v i o u s s t a t e w a s (s e l f , s t a t e) :

64 / 66

Unittest for state machine

159 ”””

160 : param s t a t e : The s t a t e to be checked

161 : t ype s t a t e : s t r

162 : r e t u r n : True i f the g i v en s t a t e was p r e v i o u s l y a c t i v e , e l s e F a l s e .

163 : r t y p e : boo l

164

165 This methods r e t u r n s the boo l ean i n f o rma t i o n i f the s t a t e machine was p r e v i o u s l y i n the

g i v en s t a t e .

166 ”””

167 r e t u r n s e l f . p r e v s t a t e == s t a t e

168

169 de f p r e v i o u s s t a t e d u r a t i o n (s e l f) :

170 ”””

171 : r e t u r n : The t ime how long the p r e v i o u s s t a t e was a c t i v e .

172 : r t y p e : f l o a t

173

174 This method r e t u r n s the t ime how long the p r e v i o u s s t a t e was a c t i v e .

175 ”””

176 r e t u r n s e l f . p r e v s t a t e d t

177

178 de f s e t s t a t e (s e l f , t a r g e t s t a t e , c o n d i t i o n) :

179 l o g g e r . l o g (s e l f . l o g l v l , ”%s Sta t e change (%s) : %s −> %s” , s e l f . LOG PREFIX , r e p r (

c o n d i t i o n) , r e p r (s e l f . s t a t e) , r e p r (t a r g e t s t a t e))

180 t imestamp = time . t ime ()

181 s e l f . p r e v s t a t e = s e l f . s t a t e

182 i f s e l f . p r e v s t a t e i s None :

183 s e l f . p r e v s t a t e d t = 0 .

184 e l s e :

185 s e l f . p r e v s t a t e d t = timestamp − s e l f . t im e s t amp s t a t e c h a n g e

186 s e l f . s t a t e = t a r g e t s t a t e

187 s e l f . l a s t t r a n s i t i o n c o n d i t i o n = c o n d i t i o n

188 s e l f . t im e s t amp s t a t e c h a n g e = timestamp

189 s e l f . c o n d i t i o n s s t a r t t i m e = {}
190 # Ca l l b a c k c o l l e c t

191 t h i s s t a t e c h a n g e c a l l b a c k s = []

192 t h i s s t a t e c h a n g e c a l l b a c k s . ex tend (s e l f . s t a t e c h a n g e c a l l b a c k s . ge t (None , {}) . ge t (None

, []))

193 t h i s s t a t e c h a n g e c a l l b a c k s . ex tend (s e l f . s t a t e c h a n g e c a l l b a c k s . ge t (t a r g e t s t a t e , {}) .
ge t (None , []))

194 t h i s s t a t e c h a n g e c a l l b a c k s . ex tend (s e l f . s t a t e c h a n g e c a l l b a c k s . ge t (None , {}) . ge t (
c ond i t i o n , []))

195 t h i s s t a t e c h a n g e c a l l b a c k s . ex tend (s e l f . s t a t e c h a n g e c a l l b a c k s . ge t (t a r g e t s t a t e , {}) .
ge t (c ond i t i o n , []))

196 # Ca l l b a c k s o r t i n g

197 t h i s s t a t e c h a n g e c a l l b a c k s . s o r t ()

198 # Ca l l b a c k e x e c u t i o n

199 f o r c id , c a l l b a c k , a rgs , kwargs i n t h i s s t a t e c h a n g e c a l l b a c k s :

200 l o g g e r . debug (' Execu t i ng c a l l b a c k %d − %s .%s ' , c id , c a l l b a c k . modu l e , c a l l b a c k .

name)

201 c a l l b a c k (* args , ** kwargs)

202

203 de f work (s e l f) :

204 ”””

205 This Method needs to be execu ted c y c l i c l y to enab l e the s t a t e machine .

206 ”””

207 tm = time . t ime ()

208 t r a n s i t i o n s = s e l f . TRANSITIONS . ge t (s e l f . t h i s s t a t e ())

209 i f t r a n s i t i o n s i s not None :

210 a c t i v e t r a n s i t i o n s = []

211 cnt = 0

212 f o r method name , t r a n s i t i o n d e l a y , t a r g e t s t a t e i n t r a n s i t i o n s :

213 method = g e t a t t r (s e l f , method name)

65 / 66

Unittest for state machine

214 i f method () :

215 i f method name not i n s e l f . c o n d i t i o n s s t a r t t i m e :

216 s e l f . c o n d i t i o n s s t a r t t i m e [method name] = tm

217 i f tm − s e l f . c o n d i t i o n s s t a r t t i m e [method name] >= t r a n s i t i o n d e l a y :

218 a c t i v e t r a n s i t i o n s . append ((t r a n s i t i o n d e l a y − tm + s e l f .

c o n d i t i o n s s t a r t t i m e [method name] , cnt , t a r g e t s t a t e , method name))

219 e l s e :

220 s e l f . c o n d i t i o n s s t a r t t i m e [method name] = tm

221 cnt += 1

222 i f l e n (a c t i v e t r a n s i t i o n s) > 0 :

223 a c t i v e t r a n s i t i o n s . s o r t ()

224 s e l f . s e t s t a t e (a c t i v e t r a n s i t i o n s [0] [2] , a c t i v e t r a n s i t i o n s [0] [3])

66 / 66

	Test Information
	Test Candidate Information
	Unittest Information
	Test System Information

	Statistic
	Test-Statistic for testrun with python 2.7.18 (final)
	Test-Statistic for testrun with python 3.8.5 (final)
	Coverage Statistic

	Tested Requirements
	Module Initialisation
	Default State
	Default Last Transition Condtion
	Default Previous State
	Additional Keyword Arguments

	Transition Changes
	Transitiondefinition and -flow
	Transitiontiming
	Transitionpriorisation

	Module Interface
	This State
	This State is
	This State Duration
	Last Transition Condition
	Last Transition Condition was
	Previous State
	Previous State was
	Previous State Duration

	Transition Callbacks
	State change callback for a defined transition and targetstate
	State change callback for a defined transition
	State change callback for a defined targetstate
	State change callback for all kind of state changes
	Execution order of Callbacks

	Trace for testrun with python 2.7.18 (final)
	Tests with status Info (20)
	Default State
	Default Last Transition Condtion
	Default Previous State
	Additional Keyword Arguments
	Transitiondefinition and -flow
	Transitiontiming
	Transitionpriorisation
	This State
	This State is
	This State Duration
	Last Transition Condition
	Last Transition Condition was
	Previous State
	Previous State was
	Previous State Duration
	State change callback for a defined transition and targetstate
	State change callback for a defined transition
	State change callback for a defined targetstate
	State change callback for all kind of state changes
	Execution order of Callbacks

	Trace for testrun with python 3.8.5 (final)
	Tests with status Info (20)
	Default State
	Default Last Transition Condtion
	Default Previous State
	Additional Keyword Arguments
	Transitiondefinition and -flow
	Transitiontiming
	Transitionpriorisation
	This State
	This State is
	This State Duration
	Last Transition Condition
	Last Transition Condition was
	Previous State
	Previous State was
	Previous State Duration
	State change callback for a defined transition and targetstate
	State change callback for a defined transition
	State change callback for a defined targetstate
	State change callback for all kind of state changes
	Execution order of Callbacks

	Test-Coverage
	 state_machine
	 state_machine.__init__.py

